动力电池包托盘是用于支撑和固定汽车动力电池的组件,通常由金属材料制成。它是电池管理系统的一部分,能够保护、固定和散热,确保电池包正常、安全和可靠运行。
动力电池包托盘通常安装在车辆底部,通过螺栓等连接件与车架或其他结构相固定。托盘上有安装孔或凸台,用于固定电池包的四个角,确保电池包的稳定和安全。同时,托盘具有抗冲击和防震性能,能够吸收路面冲击和振动,保护电池包内部的电芯和电子元件。
1、安装过程中需要使用大量螺栓进行连接和固定。螺栓数量较多,拧紧难度大,需要专业的拧紧设备,以确保托盘的稳定和安全。
2、新能源汽车中,电池包的安装位置通常较为紧凑,给托盘的安装带来一定的难度。还需要考虑其他组件的位置和接口,以确保托盘的安装不影响其他组件的正常工作。
针对以上难点,我们采用吹加吸或拾取螺钉的方式。
当螺栓到达枪头后,通过吹钉机构,确保螺栓被吹送到位并漏出夹持块,夹持块有效扶持螺栓,同时漏出的距离满足螺栓入孔要求,避免因未进孔而导致拧紧失败的问题。
由于电池托盘外壳制造精度和工装定位偏差,螺钉入孔通常较为困难。有些企业采用2D相机拍摄定位来解决这个问题,但该方法受限于空间要求,且节拍慢、成本高,不符合高效生产装配的需求。我们提供了创新型浮动拧紧方案,可以自适应调节,大大提高了螺钉入孔率,同时节省时间、提高效率,满足企业降低成本、提高效率的需求。
在智能制造流程中,自动送钉机的运行参数优化是保障产线效能的关键环节。本文针对设备核心参数——送钉速率的调节技术进行系统阐述,提供专业工程师操作指导方案。
在现代化生产过程中,自动送钉机作为关键设备之一,其性能与选型直接关系到生产线的效率、稳定性和成本控制。然而,面对市场上琳琅满目的送钉机型号和规格,如何准确选型成为摆在企业面前的一道难题。本文将从螺丝规格适配性、洁净度需求、人工加料效率、空间布局规划等多个维度,深度剖析自动送钉机选型的关键要素,并结合实际生产需求,提出科学的决策策略,为企业选购提供有力参考,助力企业提升生产效率,降低运营成本。
坚丰工控机系统凭借其卓越的易用性、直观性、智能化数据统计及防呆防错特性,已成为螺栓拧紧工位的理想选择。无论是汽车主机厂、汽车零部件行业还是3C电子等领域,该系统均能显著提升装配质量与效率,推动螺栓装配管理迈向新的高度。
在螺栓紧固过程中,拧紧曲线作为反映拧紧过程动态特性的重要指标,对于评估拧紧质量、判断拧紧是否合格具有重要意义。拧紧曲线记录了拧紧力矩随时间或旋转角度的变化情况,通过分析拧紧曲线,可以了解拧紧过程中的扭矩波动、扭矩峰值、拧紧速度等信息,从而判断拧紧操作是否满足要求。本文将从专业技术的角度,深入解析如何判断拧紧曲线是否合格。
螺丝自动供料机在现代制造业中扮演着至关重要的角色,其供料方式直接影响到生产效率和产品质量。在众多供料方式中,拾取式和吹送式脱颖而出,成为两大主流选择。下面,我们就来详细解析这两种供料方式的独特之处。
在现代化机械制造领域,动力总成变速箱的螺栓拧紧是确保产品质量和安全性的重要环节。随着工业自动化的不断发展,传统的螺栓拧紧方法已无法满足高精度、高效率的生产需求。因此,本文旨在探讨基于坚丰伺服拧紧枪的动力总成变速箱螺栓自动拧紧应用,旨在解决客户需求,突出产品优势及提供有效解决方案。
近年来,汽车召回事件频繁发生,其中因螺栓未正确拧紧导致的问题占据一定比例。这种看似微小的失误,却可能给汽车的安全性和可靠性带来严重影响,甚至引发重大事故。因此,螺栓拧紧质量的控制显得尤为重要。
动力总成系统装配是汽车制造的关键环节,其中涉及多个复杂工况。为了满足企业对自动化、智能化和柔性化装配的需求,坚丰推出了创新型送钉拧紧方案。
汽车门锁,作为车身的关键部件,安装于车门及其立柱之上,肩负着将车门稳固锁紧的重任,对整车安全防护至关重要。门锁一旦松动,不仅会干扰车辆的正常运作,还可能对车辆的整体安全构成严重威胁。
在高度自动化的汽车制造流水线上,每一道工序都追求着极致的精准与效率。然而,当我们深入观察那些看似不起眼的细节——比如汽车门锁的拧紧作业,却往往发现它仍被传统的手动工具所束缚。工人需要手持笨重的扳手,在狭小的空间内反复操作,不仅劳动强度大,而且效率低下,更难以保证每一次拧紧的精度和一致性。这种“大机器,小手工”的反差,成为了制约汽车制造智能化升级的一个隐形瓶颈。